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A connected-graph expansion of the anharmonic-oscillator 
propagator 

R A Corns 
Department of Astronomy and Physics, Saint Mary‘s Universiry, Halifax, Nova Scotia, 
Cahada. B3H 3C3 

Received 13 August 1993 

AbstracL Two series representations of the propagator associated with the quantum anharmonic- 
oscillator are developed. A closed form for the Dyson series expansion of the propagator is 
obtained by using a phase-space p e d a t i o n  technique. For Abelian interactions the Dyson 
series can be rearranged into an exponentiated connected-graph series. This representation 
is structurally similar to the cluster expansions of propagarors associated with perturbations 
of the kineticenergy Hamiltonian. The connected-graph series is patticularly ussful for the 
development of semiclassical expansions such as the WKB expansion. The analytic stmchxe in 
the physical parameters such as mass, time and Planck’s constant is readily extracted from the 
connected-graph series because of the explicit closed-form formula for the series. 

1. Introduction 

In the study of time evolution of quantum systems much information can be found from 
an investigation of the propagator. This article presents two series representations of the 
anharmonic-oscillator propagator. The first series comes from a study of the timeevolution 
integral equation and the second is ,a  connected-,pph re-summation of the first.  similar 
expansions have been studied in detail [ 1,21 for systems based upon perturbations of the 
kinetic-energy Hamiltonian and these expansions have proven facile in use for semiclassical 
and nonperturbative studies of the propagator [1,31. Such a program is possible for the 
anharmonic-oscillator propagator because of the marked parallels in structure with the 
kinetic-energy based formulas. These structural features of the propagator are, in fact, 
common to all propagators based upon perturbations of quadratic Hamiltonians [4]. 

The state of the quantum system at time t is specified by a wavefunction q, in the 
Hilbert space ‘H = P ( R d ~ ) .  The mapping qS H *t of the initial state qS to the final state 
$rt defines a unitary operator U@, s) and the time development of the quantum system is 
completely specified by U(t, s). This operator solves the initial-valued Schrodinger equation 

(l.la) 

(l.lb) 

where k(t) is the Hamiltonian and I denotes the identity operator. 

representation of the state vector @, = U(t ,  s)kY given by the formula 
The propagator is the integral kernel of U ( t , s )  and it generates a pointwise 
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The boundary condition (1.lb) forces a delta-function boundary behaviour upon the 
propagator 

lim K ( t ,  s, x ,  y) = S(x - y )  . (1.3) 
f‘S 

The family of Hamiltonians under consideration ace time-dependent perturbations of the 
harmonic-oscillator Lo, 

(1.4~) 

(1.46) 

A flat-space metric g,, is employed in the scalar product 

x . y = x  PY’ = g’”xyY”. (1.5) 

Its signature, denoted by sign(g), is the difference between the number of positive and 
the number of negative eigenvalues of g. The signature bas magnitude Isign(g)l < d. 
When the magnitude equals d this corresponds to a description of the non-relativistic 
quantum harmonic-oscillator. If the magnitude of the signature is less than d then the 
theory corresponds to the, relativistic scalar field theory of Schwinger and DeWitt 15-71, 

The momentum and position operators, respectively A and 4”. satisfy the canonical 
commutation relations 

(1.64 
(I.6b) 
(1.6~) 

The Schr6dmger representation of this algebra describes the effect of these operators upon 
wavefunctions as multiplication and differential operators: 

(1.74 

(1.7b) 

The combination 5 .  6 of momentum operators appearing in io form a multiple of the 
D’Alembertian operator, 

j . @  = -hZO. (1.8) 

The potential P ( t )  is defined by a smooth function (normal-ordered symbol) U on phase 
space. Let a = (a!, . . .,ad) denote a multi-index with length loll = a, + . . .+ad. If the 
function U has a Taylor-series expansion 

then the effect of ? ( t )  on a wavefunction @ is defined by 

CPO)llr)(x, = V ( X ,  P ;  Ollr(x). (1.10) 
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On occasion it will be useful to collect the phase space variables q and p into a single 
argument z = (4. p )  and write u(q, p ;  t )  = u(z; t). 

The evolution problem for the unperturbed harmonic-oscillator is well understood. The 
family of operators that solve the Schrodinger equation are an exponentiation of i o  and 
form a one-parameter unitary group. Denoting the time difference between the initial and 
final times by A t  = t - s, the time evolution operator is 

Uo(t, s) = ,-(iA" (1.11) 

The harmonic-oscillator propagator is the integral kernel of this evolution operator and it 
has an explicit expression known as Mehler's formula [8] 

The branch cut used in the definition of the square root function selects the argument of 
a complex number to lie in the interval (-z, XI. The classical harmonic-oscillator motion 
is caustic whenever w b t  + nlr for some integer n. At these times, KO obeys the delta 
function condition 

The boundary behaviour (1.3) of the full propagator is directly attributable to the Ai -+ 0 
behaviour of the harmonic-oscillator propagator. Notice that the sin(wAt) in the normalizing 
factor in (1.12) changes sign as i moves through a caustic. This introduces an implicit phase 
factor. that is a necessary feature of the harmonic-oscillator propagator. It ensures that the 
function KO defines an integral operator that is 'strongly continuous in t for all times, 
including the caustics. 

The arguments presented in this article closely parallel the phase-space method of 
Barvinsky and Osbom [2]. The chief distinction lies in which free Hamiltonian is perturbed 
to obtain the full Hamiltonian. Barvinsky and Osborn use perturbations from the kinetic- 
energy Hamiltonian & = $.  $/(Zm) and their propagator expressions use the ksociated 
kinetic-energy propagator 

From a purely formal point of view, treating the full Hamiltonian as a perturbation of the 
harmonic-oscillator Hamiltonian is equivalent to treating it as a different perturbation of the 
kinetic-energy Hamiltonian. The two perturbations would differ from one another by the 
harmonic-oscillator potential. The equivalence of these formalisms at the kernel level is 
not as easily seen. One useful connection that can be easily exploited when comparing the 
harmonic-oscillator formulae against the kinetic-energy formulae in [2] is to treat the angular 
frequency parameter w as a coupling constant. By taking the limit w -+ 0, formulae based 
on the harmonic-oscillator propagator will converge to the corresponding kinetic energy 
based expressions. For example, the harmonic-oscillator and kinetic-energy propagators 
exhibit this property, 

lim KO(& s, x ,  y) = &(t, s, x ,  Y )  . (1.15) 
O+O 



596 R A  Com 

The reverse connection is not so easily made. Although the kinetic-energy and harmonic- 
oscillator representations of the propagator are formally equivalent there. can be practical 
advantages to choosing one over the other. When studying anharmonic-oscillator system, 
the harmonic -oscillator representation of the propagator is the more natural choice. For 
such a system, one would expect a more rapid convergence in the harmonic-oscillator 
representation of the propagator than in the kinetic-energy representation. 

There are many structural features such as the appearance and placement of the Green 
functions in the propagator's formula that are common to the kinetic energy and harmonic- 
oscillator representations of the full propagator. These features have been shown to be 
common to all propagators based upon quadratic Hamiltonians in a recent work by Molzahn 
and Osborn [4]. In a sense, their results subsume the results in this article and in [2] 
but because of the generality of their Hamiltonians they do not give complete closed 
form expressions for the propagator. Specifically they do not give details about the time 
dependence of each unperturbed propagator because it differs for each possible quadratic 
Hamiltonian. The time dependence is left as an implicit function that can be found, in 
principal, once the Jacobi equations are solved. There is more detail to the formulae 
appearing in this article and in [2] because the propagators of the Hamiltonians i o  and & 
are explicitly known. This additional information is used to extract a complete closed form 
expression for the full propagator. 

In section 2 the Dyson series analysis of the full propagator is carried out. To begin, 
the Schrijdinger equation (1.1) is inverted into an operator-valued integral equation. Its 
iterative solution is known as the Dyson series [9] and the individual terms in the Dyson 
series are normal ordered through use of operator algebra. The resulting operator equation 
is then converted into the corresponding kernel equation. Here the explicit form (1.12) of 
the harmonic-oscillator propagator is exploited by allowing the evaluation of all derivatives 
acting upon it. 

The constructive argument in section 2 finds a closed form for the Dyson series 
representation of the propagator. In section 3 the Dyson series formula is manipulated 
to produce an exponentiated connected-graph series representation. This is accomplished 
by first changing the domains of integration. It is necessary that the potentials be Abelian in 
order to make this change of domain. Next, certain combinatorial features appearing in the 
integrals are recognized. These combinatorics are essentially the same as those appearing in 
Mayer's cluster expansion of the partition function 1101 and they yield the connected-graph 
formula for the propagator. 

Concluding remarks are gathered in section 4. 

2. The Dyson series expansion 

The initial-valued Schrodinger problem (1.1) may be converted into the integral equation 

The iterativesolution of this produces the Dyson series. It converges in the operator norm 
topology if V ( u )  is bounded but for unbounded potentials the resulting series is usually 
asymptotic. The iteration of (2.1) produces an n-dimensional hyper-hiangle domain of 
integration, 
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Using the interaction-picture. notation 

(2.3) c,(u) = e(i . /b)ioc(u)e-(iu/fi)io 

the Dyson series may be written as 

The formula 

1 1 
3! 

eABe-A = B + ~ A , B I + ~ [ A , [ A , B I l + - ~ A , ~ A , ~ A , B I 1 1 + ~ ~ ~  (2.5) 

is used to explicitly evaluate &(U). From the algebra in (1.6) the harmonic-oscillator 
Hamiltonian satisfies the commutator relations 

(2.6~) 

(2.6b) 

fi [io, i j"] = -; j" 

[io, j ~ "  = ido'ijw I 

Combining this with formula (2.5) gives the relationship 

(2.7~) 

(2.7b) 

In turn, formulae (2 .7~)  and (2.76) are used to evaluate the interaction potential with the 
result 

V;(u) = U i j  cos(ou) + -$sin(ou), pcos(ou) - mot  sin(ou); U . 

1 
mw 

e(iufi)io -IL - ~ / f i &  = i jw cos(ou) + - BIL sin(wu) 

e(iufi)io p e  -w - ( iuf i )b  = 
q e  

sin(wu) + FIL cos(ou) , 

(2.8) 

The next step is to commute the evolution operator exp[-itio/?~) in (2.4) through each 
interaction potential until it can be combined with exp{isio/fi]. The calculation is <hilar 
to that used in obtaining (2.8) and for a single interaction potential the result is 

) 1 ( m o  

e-(hlh)io = u)e-(it/fi)io (2.9) 

where 

(2.10a) 

(2.10b) 

1 
mw 

i ( u )  = 4 cos(o(t - U)) - - j sin(o(t - U)) 

B(u)  = j cos(o(t - U)) + moij sin(o(t - U)). 

The Dyson series may now be written as 

(2.11) 
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Equation (2.11) is an operator-valued equation and it implies a corresponding equation 
for the kernel of U ( t ,  s). The conversion to the kemel equation is made by replacing both 
U(t ,  s) and exp{-iAtio/k) by their respactive kernels K(t ,  s, x ,  y )  and K& s, x ,  y ) .  The 
4's appearing in the arguments of the potentials are replaced by x and momentum operators 
j in the arguments of the potentials act as partial derivatives on the x-variable. These 
derivatives act both on the x-dependence in the potentials and in the free propagator. The 
free propagator and momentum operator satisfy the commutation relation 

(2.12) 

and this can be used to commute KO through the product of potentials. On commuting KO 
to the extreme left, the full propagator can be written as a product of the &ee propagator 
with the configuration function 

[j,. K&, s, x ,  y)] = KO@, s, x ,  y)(mwx,cot(oAt) - moy,cosec(wAt)) 

K ( f ,  s ,x ,  y )  = KO@, s, x ,  Y)F(t, s, x ,  Y ) .  (2.13) 

The configuration function is given by 

(2.14) 

where 

(2.15~) 

(2.15b) 

1 R(u) = qc(u) - -j sin(w(t - U)) 
m o  

+(U) = pc(u) + jcos(o(t -24)). 

The quaiitities qc and pc  are 

sin(o(u - s)) sin(o(t -U)) 
sin(oAt) - b y  sin(wAt) (2.164 

(2.16b) 

%:(U) = x 

p&) = mox - mwy 
cos(o(u -s)) cos(w(t - U)) 

sin(oAt) sin(oA.t) ' 

They represent the classical path and momentum of the harmonic oscillator obeying the 
two-point boundary condition q(s) = y and q(t) = x .  There are caustics in the classical 
motion at the times @At = nn where n is integer. The two-point boundary problem at 
these times will have a solution only if x = y for even n or x = -y for odd n. 

As quantum operators X ( U )  and ?'(U') satisfy the commutation relationships 

[+,(U), *(U')] = -fiS)Icos(o(u - U')) 
ifi [R,(u), *(U')] = ---~isin(w(u -U')) mw 

[pP(u), +"(U')] = -iiimo$ sin(w(u - U')). 

(2.17~) 

(2.17b) 

(2.17~) 

From this algebra, we see that for equal times U = U', R(u) and $(U) form a canonical 
pair of position and momentum operators. 

The 1 appearing after the product of the potentials in (2.14) is thought of as a function 
of x upon which the Fs act. The momentum operators will also act upon the x-dependence 
in the potentials appearing to their right and we wish to evaluate these derivatives. This 
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can be accomplished by the norm$ ordering of these operators with the method of external 
sources. Effectively, k(u) and P(u) are separated from the arguments of the potentials 
and transferred into the arguments of exponentials. These exponential operators are then 
placed into normal order. Let 4,  Jk (1 < k < n)  denote pairs of d-dimensional vectors. 
The product of potentials appearing in (2.14) satisfies 

u(R(ur),  @(U,); Ud.. . u(R(u,), +(U”); U”) 1 

= U(VJ v . , , U(VJa, 0,; 0 T , 9  / .J=O 
(2.18) 

& 2 ( U d  e!I.%ud.. . eJ”&4 &?(U“) 1 I 

where the delimiter refers to setting each Ik and Jk to 0. 
Before normal ordering the exponentials in (2.18) it is convenient to introduce some 

notation. There will appear in the normal-ordering procedure three Green functions. The 
first two Green functions, satisfy the one-dimensional equation 

(2.19) 

on the interval [s, t]  but they are subject to different boundary conditions. Denoting these 
functions by gl and gz, they and their respective boundary conditions are 

sin(o(u, - t ) )  sin(w(u, - s)), 
osin(wAt) gl e, U’) = (2.20a) 

(2.20b) 

(2.21a) 

(2.21b) 

Were U> and U, are the times U, = max{u, U’) and U, = min{u. U’). The derivatives 
(a/au)gl = gl and (a/au)gz = gz appear in the third Green function and are given by the 
formulae 

cos(o(u - t ) )  sin(o(u‘ - s)) 
sin(wAt) 

cos(o(u - s)) sin(w(u’ - t ) )  I sin(oAt) 

if U =. U‘ 

if U < U’ . 
(2.22) g,(u, U’) = -&(U’, U) = 

The third Green function is a 2d x 2d matrix D(u, U’) which is the fundamental solution to 
the Jacobi equation, 

(2.23) 

Here J denotes the 2d x 2d symplectic matrix 

J = ( O  -1 0 ’> (2.24) 
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and T(a/au) is the Jacobi operator. Letting 1 < a ,  b 6 2d denote.the component indices, 
the matrix D(u, U’) may be written in block form as 

The Jacobi operator is obtained [Ill from a first-order variation of Hamilton’s equations of 
motion for the harmonic-oscillator. It forms a 2d x 2d matrix which in block form b. 

(2.26) 

An important property of V(u, U’) is the symmetry relation 

@ ( U ,  U’) = vyu‘, U). (2.27) 

This relation is critical for showing the integrand in (2.14) is symmetric under any 
permutation of the times UI, . . . , U,. This invariance under permutations ultimately leads 
to the cluster expansion in section 3. 

There is one more detail about the Green function V(u, U‘) that requires clarification. 
It is not presently defined for equal time arguments because gj(u, U‘) and b ( u ,  U’) each 
have a jump of 1 across U = U‘. Nevertheless there exist two situations where equal time 
arguments for D(u, U‘) arise and we shall distinguish between these situations by employing 
the notation V ( u ,  U) and D(u+, U). The U+ refers to taking a limit u + E as 6 J. 0. For the 
first possibility the time arguments are the same variable, say u = U’ = uj. In this situation, 
we employ the definition (2.25) for V(uj ,  uj) but with the stipulation of using &(uj - ,  u j )  

and g&j+, u j ) .  The second possibility occurs with two distinct time variables, say u = uj 
and U‘ = uk. Assuming that uj 2 uk, these can be numerically equal on the boundary 
uj = Ut. The boundary is a set of measure zero and any definitions will be irrelevant, 
but using ’D(uj ,  uk) = D(uK+, UK) for values on the boundary will reproduce the correct 
formula for the integrand. 

The exponential operators in (2.18) may now be put into normal order. This is best 
carried out in stages. Those exponentials containing both x and 5 in a sum must be split into 
a product of exponentials containing x and 5 separately. The resulting exponential products 
are then normal ordered. me Baker-Campbell-Hausdorff (henceforth BCH) formula and an 
auxillary equation resulting from the BCH formula are used to normal order these. If A and 
B are operators that commute with their commutator then 

eA+B = eA eB e-i[A.Bl ( 2 . 2 8 ~ )  
.A eB = ,B $ A 3 1  . (2.28b) 

The BCH formula ( 2 . 2 8 ~ )  is used to separate those x’s and ys appearing together in the 
argument of an exponential operator and we obtain 

,JkA?ur) = eJx’qc(ui) e(l/mo)v)A.dsio(w(ut-l)~ e-(iK/unlgilu~.ux)JI/r 

,!t.$(ut) = efk.Pc(Uk) ,Ir.8 COS(W(Ui- t ) )  e-(iirmd/2)gl(ut.u*)Ir.h , 

( 2 . 2 9 ~ )  

(2.29b) 

Next the product e’b’x(uk) erk’p(u*) is normal ordered using the formula (2.28b), 

eJx..t(ur) ,lr.?(ud = e-W2)4x(ux)  eJr.qiCurl+fx’pr(ur) e ( l / m w ) J i . 6 s i n ( o ( u ~ - r l l + 4 ~ ~ r o s ( o ( u t - r ) )  , (2.30) 
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The phase angle &&) in (2.30) is 

$kk(uk) = & p b ( u k >  U d z k b  . (2.31) 

The vectors Z k  are 2d-dimensional vectors and in block form as a column vector its 
components are 

z, = (2%) (2.32) 

The summation convention of summing over repeated a's and b's is being employed in 
(2.31). The final step is to normal order the product over k of eJ~@""e't'*(u~)). This is 
again accomplished by using formula (2.28b) with the result 

eJ~&'~) elrP(u,) ... eJn-%) 1 

(2.33) 

The phase angle Vn may be written in the form 

n 
qn =- T j . 7 F ( U j ,  U, )Z*, .  

j.k=1 
(2.34) 

This completes the normal ordering of (2.18). 
Those exponential operators in (2.33) containing the momentum operators in their 

arguments act upon the constant function 1 and when evaluated yield a value of 1. The 
gradients VJk and 0, appearing in the potentials in (2.18) can be partially evaluated using 
the commutative relation 

vJ eJk.qc(ud+h.Pdur) = eJh%c(Uk)+h.Pc(ur) [v, + qc(uk)] 
0, eJt.9c(ux)+6.Pc(~i) = er~.q , (ur )+ l~ .P, (ux) [v ,~  + pc(uk) ] ,  

(2.35a) 
(2.35b) 

Collecting the normal-ordered results with these and substituting into (2.18) and then (2.14), 
the configuration function becomes 

x u(q,(u,) + 01". pc(u.) + v,; U,) lI ,I=O d"u . (2.36) 

There remains a final manipulation on the Dyson series to prepare the expansion for the 
connected-graph representation in section 3. We first note that for any two smooth functions 
f and& 

' .  
f(Vz)g(z)l,=o = g(vz)f(z)lz=a~ (2.37) 

Equation (2.37) may be verified by a Taylor series expansion. This formula will allow a 
reversal of roles from the potentials in (2.36) which act as operators on the exponentials to 
the exponentials which will act as operators on the potentials. For 1 < j ,  k 6 n, introduce 
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U-dimensional phase-space gradients Dj and let f be a function of n phase-space variables 
zk = (xk, m). Then IDj acts as a gradient on the jth argument, 

IDjjf(Z1, . . . , z,) = Vqf(2l.. .. ,ZJ. (2.38) 

In the application here f is the product of potentials and the effect of Dj is 

I D ~ u ( z ~ ; u I )  ... u ( z ~ ; u , )  = U ( Z I ; U I )  ... ( V U ) ( Z ~ ; U ~ )  ... V ( Z ~ ; U . ) .  (2.39) 

By applying identity (2.37) to (2.36) the Dyson series representation of the configuration 
function becomes 

(2.40) 

where z&) is the phase space variable (&), pc(u)). 

3. Connected-graph expansion 

The connected-graph representation of the configuration function is a rearrangement of 
Dyson series into an exponentiated series. The Abelian nature of the potential is used to 
accomplish this. Specifically, the commutative property of the potential is necessary to 
change the time-ordered integrals over T,' to unrestricted integrals over the hyper-cubes 
[s, t]". This feature is necessary in order to associate the individd terms of the Dyson 
series with connected graphs.' Once the series has been reordered via a re-summation over 
graphs, the analytic behaviour of the propagator with respect to the physical parameters 
71, m and At is easily extracted. These behaviours are very important for the various 
semiclassical expansion schemes. The s m d  A asymptotics give the WKB expansion; the 
large mass behaviour leads to a gauge invariant derivative expansion; and the Schwinger- 
Dewitt asymptotics comes from the small. time behaviour. 

To facilitate an understanding of the small time behaviour, a change of variables in the 
integrals in (2.40) must be made. Let 5 6 IO, 11 be the scaled time coordinate related to the 
time U by 

U - s  e=-, 
At (3.1) 

Many functions will depend implicitly on the scaled time coordinates via the inverse relation 
expressing U as a function of (. To make the ( dependence more explicit replace U by the 
the function f a  = u(5) = s + {Ar. Then functions such as the classical path q&) and 
momentllm p&) become 

(3.244 

(3.26) 

The change of variables uj + 5;. changes the domain of integration from the hyper-triangle 
T,' to the hyper-triangle 

Q Z = ( ( k  ,..., ~ n ) ~ [ 0 , 1 1 " 1 0 $ 5 n $ ~ ~ ~ ~ ' 5 ~  $1). (3.3) 
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The nth-order differential becomes d"u = (Af)"d"[. After this change of variables the 
configuration function is 

(3.4a) 

(3.4b) 

x ~(z&'); Sp) . . . u(zd<;): 6;) dnP n 2 1 . (3.4c) 

because the 
potentials commute with themselves and because of the Green function's symmetry relation 
(2.27). As a result the integral over the hyper-triangle may be replaced by an integral over 
the hyper-cube I" = [0, I]" and a multiplicative factor of l l n ! .  Furthermore because the 
phase space gradients iDj commute with themselves the exponential operator in ( 3 . 4 ~ )  may 
be split into a product of exponentid operators. Consequently Z.  may be written as 

The integrand is invariant under permutations of the variables [I, . . . , 

Z l ( t ,  s, x ,  y) = e-(ih/z)~b(~P.6P)nol.a,,,(z~(~P); $p)dgi (3.50) At Ih s r 

x u(zdtP,; <;I.. . ~(ZC(<"), ' . ' d " <  t") n ) 2 .  (3.5b) 

The configuration function series ( 3 . 4 ~ )  is ready to be reorganized into the exponentiated 
cluster series. This has become a standard exercise in the recent literature and details may 
be found in section 3 of [ 11. Essentially, the linked-graph resummation argument parallels 
those for the cluster expansion of the partition function [lo]. Of particular importance are the 
features of having an integration domain I" and having the product over 1 < j < k < n. The 
product over j i k can be expanded into a sum whose terms are in one-to-one association 
with n-vertex gaphs. The hyper-cube domain feature allows a factorization of integrals 
over I" into products of integrals over lower-dimensional byper-cubes. The result is series 
( 3 . 4 ~ )  can be rearranged into a product of series solely involving connected giaphs. 

The relevant notation for the sum over graphs is as follows. A graph [12] is a pair, 
C = (t!, E ) ,  consisting of a vertex set =~{ l , .  . . , l }  and an edge set E .  The elements 
CY E E are unordered pairs of distinct integers from F. If each pair of vertices in a gaph 
is joined by a path the graph is said to be connected. If between any two vertices there is 
at most one edge the graph is said to be simple. The term 'cluster' is synonymous with a 
connected simple grzph. Let Ci denote the set of all clusters formed over a given index set 
i and define the sum 

Let r ( E )  be the sum over the summation indices h,, 

(0 i f E = 0  
r ( E ) =  E h u  otherwise . I .EH 

(3.7) 
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The integer r ( E )  satisfies r ( E )  > e- 1 and the equality in this relation is equivalent to having 
the minimally-connected graphs and each h, = 1. The minimally-connected graphs are also 
referred to as tree graphs. To each a = ( j .  k) E E one can associate a differential operator 

iB.z = i“ctj? g)Dj*Dkb. (3.8) 

There is a second type of differential operator that appears and it is defined by 

Employing this notation, the configuration function can be rearranged into the 
exponentiated series 

(3.10) 

The functions Le@, s, x ,  y) are called cluster integrals and are defined by 

The first three cluster integrals are relatively easy to write out. The formulae rapidly become 
more. complicated as the number of vertices increases. For e = 111 there is but one possible 
graph, C = ((1],0). The cluster integral is 

For the vertex set i = (1, $1 the only possible connected graph is 1-2. Setting a = (1,2) 
the cluster integral is 

(3.13) 

There are four graphs that contribute to the third cluster integral. Three of these are tree 
graphs, 1-2-3, 1-3-2 and 2-1-3 and the fourth is the complete graph 1-2-3-1. Denoting 
each of the possible edges by a: = (1,2), @ = (1,3) and y = (2,3) the third cluster integral 
is 

L3( f ,  s , x ,  Y )  = m CO m ( - l ) b ~ + h p + ” ( i f i ) + + h ~ + ~ - 3  W3 
2”3!n! h.=l hb=l n=O 
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(3.14) 

The formulae (3.10) and (3.11) are the second principal result of this work. They 
are exact in the sense that no approximations have been made by neglecting terms. The 
arguments leading up to these however are purely formal and this expression for the 
propagator is typically asymptotic. For many purposes, such as semiclassical expansions, 
the asymptotic nature of the cluster expansion suffices. For example, consider 'the small 
h behaviour. This behaviour has been. studied in detail [I31 for representations of the 
propagator based upon the kinetic-energy propagator. The leading order behaviour of the 
argument of the exponential appearing in the propagator is O(h-') and this term is associated 
with the tree graphs; The:WKB expansion follows as a natural consequence of this leading 
order behaviour and the propagator in the limit h + 0 has the asymptotic behaviour 

The function S( t ,  s, x ,  y) is the classical action. Structurally fie h dependence of the 
hagnonic-oscillator-based formula for the propagator is similar to the kinetic-enere-based 
formula From (3.11) one can read off  the lowest order h contribution which occurs when 
r (E)  = .t - 1 and n = 0. The tree graphs and setting each h , ~ =  l~correspond to having 
r (E)  = t - 1. In the limit h i 0 the propagator for the harmonic-oscillator-based formula 
behaves as 

. , . .~~ , 

The function s(z, s , x ,  y) is ~ . 

mw 
2 S(t ,  S ,  X ,  y) = ~ - ( [ x .  x + y . y] cot(wA.t) - 2x  . YCOSW(UA~)) + f ( t ,  S ,  X ,  y) (3.17) 

and the function f is 

'.. '- .... 
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00 (_l)hp+h"+n(~)kg+k"+n-3 (W3 
20 3! n! 

(3.14) 

The formulae (3.10) and (3.11) are the second principal result of th is  work. They 
are exact in the sense that no approximations have been made by neglecting terms. The 
arguments leading up to these however are purely formal and this expression for the 
propagator is typically asymptotic. For many purposes, such as semiclassical expansions, 
the asymptotic nature of the cluster expansion suffices. For example, consider the small 
R behaviour. This behaviour has been studied in detail [13] for representations of the 
propagator based upon the kinetic-energy propagator. The leading order behaviour of the 
argument of the exponential appearing in the propagator is O(h-') and this term is associated 
with the tree graphs. The ~ K B  expansion follows as a natural consequence of this leading 
order behaviour and the propagator in the limit h + 0 has the asymptotic behaviour 

The function S ( t ,  s, x, y) is the classical action. Structurally the h dependence of the 
harmonic-oscillator-based formula for the propagator is similar to the kinetic-energy-based 
formula. From (3.11) one can read off the lowest order h contribution which occurs when 
r ( E )  = 8 - 1 and n = 0. The tIee graphs and setting each h, = 1 correspond to having 
r (E)  = f2 - 1 .  In the limit h 4 0 the propagator for the harmonic-oscillator-based formula 
behaves as 

The function S( t ,  s, x, y) is 

S( t ,s ,x ,y)  = - ( [x -~+y .y ]co t (oAt )  - Z x . y c o s e c ( o A t ) ) + ? ( t , s , x , y )  (3.17) 

and the function f is 

mo 
2 
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Here the set is the set of all tree graphs formed from the index set i. The details behind 
the expansion (3.17) remain to be investigated. It is likely that i? is indeed the classical 
action for the anharmonic-oscillator and the higher-order terms may be obtained as they 
have been done for the kinetic-energy-based propagator formula. 

Mizrahi [I41 has studied the wm expansion of the quantum propagator for the one- 
dimensional oscillator perturbed by the anharmonic potential hx4/4, obtaining an expansion 
in the form 

Here M ( t ,  s, x, y )  is the VanVleck-Morette. function, and the coefficient functions Kj  are 
expressed in terms of path integrals. (The exponentiated fi series (3.16) may readily be 
arranged into the form of (3.19) by use of the cumulant formulas.) In deriving (3.19) 
Mizrahi utilizes exact expressions for the classical trajectories of the anharmonic-oscillator 
to find formulae for the Green function and propagator. By contrast, in the present work 
where the anharmonic potential u(x ,  p ;  1) is left arbitrq, these trajectories and Green 
functions cannot be written in closed form. Instead it is the classical trajectory and Green 
function of the harmonic-oscillator which arise. 

4. Concluding remarks 

The Dyson series representation (2.40) for the configuration function represents the first 
principal result of this article. It has the advantage over the connected graph expansion of 
being applicable to a broader class of potentials. For example, pot-ntials with spin degrees 
of freedom are admittable to the Dyson series representation [15,16] but not to the connected 
graph representation. They fail for the latter because these potentials do not commute with 
themselves in general. The commutative property was crucial for reorganizing the Dyson 
series into the connected graph series. 

There is some overlap between the Dyson series and the semiclassical expansion 
techniques developed by Langouche et al [17-191. Those authors describe the full 
propagator K ( t ,  s, x. y )  with aphase-space functional integral and then carry out asymptotic 
expansions of the integral with respect to small dexviations about the classical trajectory. The 
higher-order coefficients to their expansion may be described with one of the Green functions 
of the Jacobi operator for the associated classical problem. 

The cluster expansion (3.10)-(3.1 l j  of the configuration function is the second principal 
result of this article. In the sense that there have been no terms which have been neglected, 
this formula for F is exact. The derivation has been formal in that no conditions have been 
specified on the potentials to guarantee convergence. of the series involved. The Dyson 
series itself is often only asymptotic and hence the connected-graph representation would 
be, at best, asymptotic. For the class of potentials consisting of Fourier transforms of 
complex measures of compact support it has been shown [E, 16,201 that the Dyson series 
representation of the propagator converges pointwise for sufficiently small times or large 
mass. Nevertheless the corresponding connected-graph expansion was asymptotic. 

In other applications a coupling constant expansion may be obtained from the cluster 
expansion by replacing the potential by U + hu. By inspection Lt = O(h') and the cluster 
representation for the configuration ,function is an exponentiated series in the coupling 
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constant 1. This could be used to develop non-perhubative expansions of the propagator. 
These expansions would be non-perhubative in the sense that any given term would have 
all powers of the coupling constant because the coupling constant is part of the argument 
of an exponential. 

Although the Dyson series was key to obtaining the connected-graph expansion of 
the propagator there exist other avenues by which graphical methods may be utilized. 
Equation (3.10) has been obtained through a combination of the cluster methods with 
quantum transport equations [21]. The transport equation method is sufficiently general 
for applications of graph theory to transport equations outside of quantum mechanics. A 
functional integral method has been developed by Roekaerts et al [22-241 for studying 
exponentiated series expansions of the imaginary time propagator (beat kernel). However, 
the graphs they utilize are more complicated than clusters and their coefficients are not 
expressed in closed form. 
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